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(28) NOTE ADDED IN PROOF. After the submission of our paper F. Texier, O. 
Henri-Rousseau and J. Bourgois published a related paper in Bull. Soc. 
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ours but is totally qualitative and therefore does not allow analysis of bor
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m-Quinomethane: Synthesis of a 
Covalent-Biradicaloid Pair of Valence Tautomers 

Sir: 

Two species comprise a covalent-biradicaloid pair when they 
respectively contain all and one less than all of the complement 
of bonds permitted by the standard rules of valence. Ring-
cleavage reactions frequently implicate such pairs of valence 
tautomers (e.g., cyclopropane-trimethylene, methylenecy-
clopropane-trimethylenemethane), and, in general, the isomer 
of higher covalence is the more stable. However, in the case of 
the m-quinone1 system symbolized by 1, where the tautomers 
2 and 3 differ by the presence or absence of the C-1 -C-5 bond 

(dashed line), the covalent form 2 will be destabilized by strain, 
whereas the biradicaloid form 3 will be stabilized by resonance. 
Thus, the two forms may not differ greatly in energy. Indeed 
rough bond additivity calculations2 suggest that, in the case 
of m-quinomethane lb, the covalent tautomer 2b actually is 
less stable than the biradicaloid one 3b by ~ 4 kcal/mol. We 
report here directed preparations of the valency tautomers, 2b 
and 3b, of m-quinomethane, lb.3 

Scheme F outlines a four-step synthesis of 6-methylenebi-
cyclo[3.1.0]hex-3-ene-2-one (2b)4 '6 from cyclopentenone 
ethylene ketal. Pyrolysis of 2b (15 m, 150 0C) in ethylene 
glycol gives the ether 4a7'8 in good yield. Similarly, 4a and its 
analogue 4b4'7'8 are the major products of the photolyses of 2b 
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Scheme la 
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a(i) 2 equiv of BuLi, 2 equiv of CH3CHCl2, -30 0C, pentane, 
following a general procedure of S. Arora and P. Binger, Synthesis, 
801 (1974); (ii) Br2, Et2O, 0 0C, following a general procedure of 
E. W. Garbisch,/. Org. Chem., 30, 2109 (1965); (iii) 4 equiv of 
KOr-Bu, Me2SO, 60 0C; (iv) Et2O, 5% H2SO4. 

(350 nm, 0 0C) in ethylene glycol or methanol solvents, re
spectively. Photolysis of 2b in tetrahydrofuran or pyrolysis in 
p-cymene give only insoluble polymeric products. What role, 
if any, is played by 3b in these reactions remains to be eluci
dated. 

OH 

i-L A or hv \ \ \ 

Q. 4a: R - CH2CH2OH 

J K R = Me 

Irradiation at >310 nm of a degassed, glassy 0.29 M solution 
of dienone 2b in 2-methyltetrahydrofuran at 11 K in the cavity 
of a Varian E-9 electron paramagnetic resonance (EPR) 
spectrometer (microwave frequency 9.064 GHz) for a few 
minutes gives rise to a well-defined triplet spectrum which 
persists for at least an hour. The spectrum, which consists of 
a group of six lines centered around 3260 G (Ams = ± 1 tran
sitions) and a weaker line near 1630 G (Am5 = ±2), can be 
analyzed10 in terms of the zero-field splitting (ZFS) parame
ters, \D\/hc =* 0.027 cm- ' , and \E\/hc =* 0.008 cm"1, by 
using an anisotropic g tensor. When a 0.03 M solution of 2b 
is irradiated at 77 K, no EPR signal is observed; however, in
clusion of 0.25 M benzophenone leads to a triplet spectrum 
which, although weak, is identifiable as the same as that seen 
before, superimposed on a doublet impurity peak. A solution 
0.3 M in 2b and 0.25 M in benzophenone, acetophenone, or 
acetophenone-ds irradiated at 10 K gives a strong signal of the 
same triplet. 

The most plausible candidate species for the carrier of the 
EPR spectrum is a triplet state of the m-quinomethane bira-
dical, 3-methylenephenoxyl (3b). Two lines of argument, one 
exclusionary and one circumstantial, support the assign
ment. 

A superficially attractive alternative might be an electron
ically excited triplet state of the bicyclic enone 2b, but this is 
inconsistent with the long lifetime of the signal. Moreover, an 
enone triplet would be expected"-12 to show a much larger 
\D\/hc value (0.2-0.3 cm - 1 ) than that observed. 

Although theory13-15 has been but little tested in this area 
and hence cannot be conclusive, approximate semiempirical 
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calculations of the ZFS parameters using simple Hiickel wave 
functions afford permissive support. For this purpose, we as
sume that only the dipolar coupling contributes significantly 
to the ZFS and that spin-orbit effects can be neglected. All the 
component two-center integrals of the expectation value (D) 
are evaluated by the point-charge approximation of 
McWeeny,15 but all three- and four-center integrals are ne
glected.13 We calibrate this highly approximate method by 
calculations of |D \ /he for three known triplet biradicals, tri-
methylenemethane (TMM), tetramethyleneethane (TME), 
and 1,8-dimethylenenaphthalene (DMN) as 0.052, 0.049, and 
0.040 cm - 1 , respectively.16 The corresponding experimental 
values are 0.024,17 0.020,18 and 0.02219 cm - 1 . Clearly, the 
method tends to overestimate the D values by roughly a factor 
of 2. Since integral values obtained by the point charge 
method15 agree quite well with those obtained13 by rigorous 
numerical methods, the evaluation of the integrals probably 
is not the source of the high D estimates. A more probable 
origin of the discrepancies is in the use of single configuration 
wave functions. Other studies13 have indicated the importance 
of configuration interaction in the accurate calculation of ZFS 
parameters. 

Values of \D\/hc for 3a, 3b, and 3d calculated by the present 
approximate method are 0.070, 0.046, and 0.032 cm - 1 , re
spectively. Scaling the 3b value to the above results for TMM, 
TME, and DMN, we obtain a predicted valueof 0.023 cm - 1 , 
in good agreement with experiment. The results also suggest 
that the experimental \D\/hc values for the triplet biradicals 
(3a and 3d) of w-quinone and w-quinodimethane should be, 
respectively, larger and smaller than that of 3b. 
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Rapid Selective Dimerization of Ethylene to 
1-Butene by a Tantalum Catalyst and a New 
Mechanism for Ethylene Oligomerization 

Sir: 

Some time ago we found that Ta(CH2CMe3)S(CHCMe3),1 

at least 2 mol of PMe3, and ethylene (40 psi) in pentane at 25 
0C produced a homogenous catalyst which rapidly dimerized 
ethylene selectively to 1-butene. Since such selectivity is rare,2 

we set out to find a plausible explanation. We believe the C4 
chain does not form by "insertion of ethylene into a metal-ethyl 
bond" but via a metallacyclopentane intermediate. 

Ta(CH2CMe3)3(CHCMe3) reacts with PMe3 (L) to give 
Ta(CHCMe3)2L2(CH2CMe3) .3 This molecule probably has 
a trigonal-bipyramidal structure similar to that recently found 
for Ta(CHCMe3)2L2(mesityl)4 (axial L's and two different 
neopentylidene ligands which lie in the trigonal plane). It reacts 
rapidly with ethylene (30 psi) in pentane to give 3 mol of neo-
pentylethylene,5 one of two "normal" products of neopentyl
idene cleavage by ethylene,6'7 and a catalyst which will dim-
erize ethylene to 1 -butene at a rate of ~0.5 turnovers/metal-
min at 0 0 C; essentially no internal butenes are produced and 
longer chain products do not appear until 1 -butene is virtually 
the solvent. Removing all volatiles from a typical catalytic 
reaction at 0 0 C leaves a red-brown oil which by 13C NMR 
(67.89 MHz) contains largely two organometallic compounds 
in approximately a 70:30 ratio. The same two (in a variable 
ratio) are seen by 13C NMR in a functioning catalytic reaction 
in toluene-^8 at —20 0C. They are extremely soluble in pentane 
and will not crystallize readily, even at —78 0 C. 

The reaction between blue Ta(C2H4)L2Cl3
8 and 3 mol of 

EtMgBr gives what is clearly a close relative of the major or
ganometallic component of the catalytic reaction (1, eq 1). The 
characteristic "virtual" triplet pattern for the PMe3 ligands 
in the 1H or 13C NMR spectrum suggests that 1 is also a tri-

Ik I ,.Cl ether I J l 
(D "> + 3 EtM9Br * Et -Ta , 

Cl I SC1 -30= I N 
L L 

I 9 
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